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HEAT-TRANSFER PROCESS LOOPS IN
INTERMEDIATE-CARRIER SYSTEMS

Z. R. Gorbis UDC 536.27

A heat~transfer system with an intermediate heat carrier (the first loop in a nuclear power system,
fire tubes in indirectly heated systems), is considered as a device with a heat-transfer loop; insucha
loop one has a closed sequence of processes, which bring the parameters of the intermediate carrier back
to the initial values and which are intended to transmit heat from the primary carrier to the secondary
one. An essential difference between such a cycle and a thermodynamic cycle is that there is no conver-
sion of heat into external mechanical work., The heat-transfer cycle consists of processes of heating,
cooling, and displacement of the intermediate carrier. The cycle will be ideal if the heat losses are
small, as are the pressure and mass losses. Then the transport processes will be adiabatic for the in-
termediate carrier, while the heat-transfer processes will be isobaric; the looping number and change
in the amount of heat are

pp = G1/G; = ¢\ Wi/ciW, = const; upp = Gi/G, = const;  § TdS = 0. (1)

There is no meaning in representing an ideal cycle in T — S coordinates, since the area in such coor-
dinates will be zero; int—aF coordinates (or t —kF for recuperators) the areas bounded above and below
by the temperature curves correspond to the amount of heat transferred. Figure 1 shows the variations
in the heat-carrier temperatures (in the general case, in the enthalpies) and in the temperature differences
between them. The efficiencies o1 and oy of the components and of the system as a whole 0 are defined
by the ratios of the corresponding areas, For instance, for the system
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Formula (3) is suggested as a general relationship for the efficiency of such a loop; one can obtain
as particular cases expressions given in [1] for particular ratios of the water numbers of the carriers.
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For instance, with Wy > Wy > Wj it follows from (3) that 1/0¢ = (1/07 + 1/07p — 1) Wy/Wi. The area fjige
corresponds to the standard heat-transfer cycle, i.e., 0 =1, and the efficiency is the higher the more the
actual eycle fills the standard one (the closer 6tj approaches ATmax.c) for a given Wi/Wmin.c- Concepts
on such cycles are also useful under real conditions of use, as in many closed-loop systems. Combined
analysis of the thermodynamic cycle and the heat-transfer cycle may here be useful.
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MODIFIED HIRSCHFELDER EQUATION OF STATE
FOR GASES

A. M, Shelomentsev and N. K. Bolotin UDC 536.71

Hirschfelder's well-known equation of state for the gaseous phase of individual substances is placed
at the basis of a generalized equation of state for nonpolar substances,

The modified equation finally takes on the following form:
I. Any TR, PR = 1.
Pp=TgI—Wy(TR)pk— WyTg) ok +£(or)],
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PR = PoM
The correlation factor 3 is calculated from the equation
T gg log (0.98162P)

1 —Tgp

where Tgp is the reduced boiling temperature at atmospheric pressure; in the equations P = P/Pq, Ty
=T/Te, TBR =TB/Te; T, °K is the temperature; P, bars is the pressure, p, kg/m? is the density; M,
kg/mole is the mass of a kilomole; R, = 0.,083144 m?® -bar/kmole - deg,

An advantage of the equation obtained over the original equation is that it has a higher accuracy and
requires only the normal boiling temperature and two critical parameters, the temperature and préssure,
for its use.
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A check against the P— V — T data for 11 substances showed that the average error in determining
the density in the range of reduced temperatures and pressures of 0.5-10 and 0.002-40, respectively, was
0.5-2% with 2 maximum of 2-7%. The proposed equation can be recommended for the calculation of the
thermodynamic properties of the gaseous phase of little-studied substances.

Dep. 2288-74, April, 16, 1974,
Original article submitted May 8, 1973,

CALCULATION OF HEAT EXCHANGE IN
TURBULENTLY FLOWING LIQUID FILMS

Yu. T. Borshchevskii, I. M. Fedotkin, UDC 532.59:536.242
M. N. Chepurnoi, and V. E, Shnaider

The main hydrodynamic parameters of turbulent film flow in vertical tubes were studied analytically.
A power law of velocity distribution was used. The equations obtained for the average flow velocity, film
thickness, and coefficient of hydraulic friction agree with the experimental data of L. Ya. Zhivaikin and
B. V. Volgin with an accuracy of 10%.

An analysis of the heat exchange according to well-known schemes is presented on the basis of the
hydrodynamic flow characteristics obtained. Using the Reynolds analogy and the semiempirical transport
theory of L. G. Loitsyanskii, in particular, the corresponding criterial equations are derived:

Nu = 0,0284Re 75pr%3 |
Nu = 0,0172Re®53p%4 |
A comparison of these functions (curves 5 and 6 in Fig. 1) with the experimental data of E. G.

Vorontsov, I. M. Fedotkin, W. H. MacAdams, and W, Wilke showed that the semiempirical transport
theory describes the heat exchange in turbulently flowing films somewhat better than the Reynolds analogy.

Fig. 1. Comparison of functions
Nu = f(Re) at Pr = 1 according to
Egs. (1) and (2) (curves 5 and 6,

respectively) with data: 1) of [1];
2) of [2]; 3) of [3]; 4) of [4].
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HEAT EXCHANGE AND FRICTION IN A FLAT
TUBE WITH ONE-SIDED HEAT SUPPLY

I. S. Olonichev UDC 536,244

Turbulent flow of a compressible gas in the initial section of a flat tube with nonsymmetrical heat
supply is examined. A system of two~dimensional boundary-layer equations with initial uniform velocity
and temperature profiles and linear variation in the heat flux or temperature at one of the walls of the
tube is solved by the grid method. The temperature variation in the physical properties of the gas ina
direction perpendicular to the flow is taken into account. The data of Reichardt and Goldman are used for
the characteristics of turbulent transfer. The system of differential equations is approximated with the
help of an implicit six-point scheme. The algebraic equations obtained are solved by the trial run method
in conjunction with the iteration method.

The results of the numerical solution show that the nonsymmetrical heat supply affects not only the
temperature profile, but also the velocity profile, For example, the velocity maximum is displaced to-
ward the hotter wall, This is caused by a drop in the density near the wall and a corresponding increase
in velocity, The Nusselt number with turbulent flow and one-sided heat supply is 10-12% lower than the
Nusselt number with symmetrical heat supply, which is explained by the relative growth of the thermal
boundary layer. The level of the decrease in the Nusselt number is in good agreement with the results of
experimental studies of heat exchange in flat channels., The effect of nonsymmetrical heat supply on the
coefficient of resistance is negligible.

The results of numerical calculations with one~sided heat supply and with temperature factors of
Tywa’ To = 3-4.5 are satisfactorily generalized by known criterial functions obtained for the initial section
of a round tube, by B. S. Petukhov's equation, in particular. An equation obtained by the author and which
describes the results of numerical calculations with an acecuracy of +6% is presented for calculatmns with
large values of Twa/T = 10-28.

Dep. 2283-74, May 27, 1974.
Original article submitted July 4, 1973.

HYDRODYNAMIC EFFECTS IN SURFACE HEAT
RELEASE FOR DRY METAL—~ POLYMER FRICTION

V. V. Kharitonov UDC 539.538.62

The paper deals with the heat propagation for a system of bodies in dynamic contact, with heat re-~
leased within the surface layer due to the formation and disruption of a certain structure there, the layer
having a depth from some microns to 1 mm or more, the loading conditions and materials governing the
exact depth. The solution for the nonstationary case gives temperature-distribution curves having a char-
acteristic maximum at a certain distance from the contact surface, which agrees well with experimental
evidence.

It is assumed that the contacting materials are very different in thermophysical properties, and
also that the properties of the surface layer producing the heat are different from those of the main unde~
formed material. The friction problem for two bodies is thus reduced to that of heat propagation in a sys-
tem of three bodies with a distributed bulk source in the middle body, and the prOpertLes of this third body
are determined from the conditions for numerical agreement between the calculated and measured values.

The solution shows that the surface layer of metal in friction against a polymer should have very
much elevated thermal conductivity relative to the base metal, while the heat transfer in it is similar to
that in flow of a liquid metal in a narrow slot of width of the order of the thickness of the deformed'zone,

e., the metal behaves more or less as a liguid under these conditions, its hydrodynamic behavior then
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defines the heat transport and momentum transfer through the surface layer. This enables one to use the
theory of similarity for transport processes.

Dep. 2278-74, April,19, 1974,
Gomel Branch, Belorussian Polytechnic Institute.
Original article submitted October 2, 1972,

THERMODYNAMIC EQUILIBRIUM IN THE
Si—Cl—H SYSTEM IN AUTOEPITAXIAL GROWTH
OF SILICON FILMS

A. I. Lyubarskii UDC 532.696

An analytical discussion is used to examine the effects of convective mass transfer on the equilibrium
composition at the surface of the substrate in an epitaxial deposition system.

The phenomenological model completely corresponds to that of [3], but some additional assumptions
are made.

The transport equations for the mass of component i are put in the following dimensionless form:

dce 20, 1 ¢
g Fa, a4 1)

0x; = or r Or

u
The boundary conditions and solution are analogous to those for heat transfer [2]. The solution of
[1] is used in a flux~balance equation for chlorine at the surface:
(Egc)n = 0. (2)

Algebraic transformations give a transcendental equation for the z parameter [1], which has been solved
numerically by computer.

Results show that the equilibrium partial pressures of the components at the surface should be cal-
culated not from the initial mixture composition but from the values defined from the condition of [2],
namely, the conservation of the chlorine flux at this surface.
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THERMAL CONDUCTIVITY MEASUREMENT ON
HEAVY WATER WITH A RELATIVE NULL METHOD
EMPLOYING A TRANSIENTLY HEATED WIRE

A. P. Bibik, I. V. Litvinenko, UDC 536.22
and I. V. Radchenko
A method has been described [1] for measuring the therm'al—condu'ctivity ratio for two liquids (one
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of them a standard) with very high accuracy if the difference in thermal conductivity is not very large;
this has been applied to the thermal conductivity of D,O in the range 0-40°C. The theory is presented
briefly. The apparatus consists of a bridge containing two cells, which themselves contain the test and
standard liquids, the bridge being fed from an audio oscillator, and working into a recording section con-
sisting of a precision amplifier and a loop oscilloscope. Glass-coated microwire is used in the heater
and resistance thermometer, The thermal conductivity is defined by

Ahst= v/vs, 1)

where A and Ast are the thermal conductivities of the test and standard liquids, while v is the ratio of the
bridge arms when the bridge is insensitive to resistance change in the cell wires, with v, the same during
calibration measurements with the standard liquid in both cells.

A detailed description is given of the method of measuring v. This quantity is calculated on mea-
surements on the rate of bridge unbhalance for certain specified values of vj. The accuracy of the method
and measurements are evaluated. The heavy water had 99.8 atom % D,0. The standard liquid was
double-distilled ordinary water. The results are represented in the form

Ap,0/ Mo = @+ bt + cf?, (2)

where a = 0,996; b=—0.65-10"% K~'; ¢ =0.13-10"8 K™%, the coefficient of variation is estimated as
about 0.3%. A comparison is made with published values.

Dep. 2313-74, November 3, 1973.
Original article submitted July 9, 1971.

EFFECTS OF TANK GAS STIRRING CONDITIONS
ON HEAT TRANSFER TO MELTING ICE

A. S. Nevskii and A. 1. Malysheva* 536.421

Experiments have been performed on the effects of bubbling conditions on the heat transfer in the
melting of ice cylinders of diameter 65 mm and height 70-80 mm in water and 20% NacCl solution. In the
first series, the air was supplied through holes at the bottom directly under the cylinder at a distance of
120 mm. The heat-iransfer coefficient o is related to the air-flow rate Q. Table 1 compares for the
bubbling and static states for Q of 40 liter/min.

The figures show that the bubbling has more effect on the heat-transfer coefficient when the latter
is small for the liquid at rest; this is particularly so when pure water is compared with the NaCl solution.
Bubbling thus eliminates differences in heat-transfer coefficients observed for a liquid at rest. This is
to be expected, since the bubbling largely eliminates the hydrodynamic features of the heat transfer in the
stagnant state.

In the second series, o was measured for five forms of hole disposition. In the first form, the air
was supplied from a circle of the same diameter as the cylinder. In the second and third, the air was

*Deceased.
TABLE 1
Heat~transfer factor Increase in
Liquid W/(mz'deg) - transfer fac-
temp., °C NaCl, wt. % Eor proc%llxced
' gas flow no flow &3 gas row

10 0 5000 221 22,6
20 0 5140 358 14,4
20 20 4850 625 7,7 >
10 20 4740 500 9,5
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supplied through a ring having an internal diameter the same as the cylinder diameter and outside diam-
eters of 110 or 130 mm, In the fourth, the holes were distributed throughout the cross section of the
tank (220 X 225 mm), except for a circle under the cylinder, while in the fifth the holes were placed at
the corners of the tank, Figure 1 shows the results. The numbers on the curves correspond to the
numbers of the styles, It is clear that the heat transfer is not dependent on the number of holes per unit
area, and also the initial speed of the air does not influence the heat transfer.

The values of o are largest when the air is supplied under the bottom of the cylinder, It then flushes
the bottom and sides of the cylinder. As the air is distributed over a larger volume, there is a tendency
for a to fall; even larger falls occur when the air is supplied at points distant from the melting surface.

Dep. 2306-74, June 21, 1974,
Original article submitted June 19, 1973.

STUDY OF THE CONVECTIVE DRYING OF CORDS

V. I. Konovalov, V. B. Mikhailov, UDC 66.047:677.4.921.36
and P. G, Romankov

In the drying of cords made of chemical filaments impregnated with latex compounds there are two
sections of time stabilization of the temperature on the temperature curve t(r): near the temperature of a
wet thermometer and near the boiling temperature of water. The correspondmg critical moisture con-
tents are estimated as Uicr 0.56 U, (according to A. V. Lykov) and Uper = 0.08,

It is shown from a study of the migration of the compound along large specimens that at first the
drying occurs from the surface, while after the material reaches a temperature of 100°C the evaporation
becomes volumetric. The phase-transition criterion increases sharply from 0 to 1, accordingly.

It is shown that for surface evaporation one can neglect the thermal resistance of the cylinder when
Bi[Rb/(Rb + 1)] = 0.5, and when Bi = 0.5 for uniformly volumetric evaporation.

A zonal method of calculating the moisture content and temperature of the cords for the entire drying
process is given. The drying rate is determined on the basis of a well-known piecewise-linear approxima-
tion, The temperature is calculated on the basis of the solution obtained for the basic equation of drying
kinetics

C . Cy )
:Kexp (— K1) — (fm— ts.z— 62_——3—1() exp (—C,7).
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Here Bi and RDb dre the Biot and Rebinder numbers; tm is the temperature of the medium; K is
the drying coefficient; Cy=aF/Myc; C; = (r/c)Ng,z, where tg , and Ng,z are the temperature of the ma-
terial and the drying rate at the start of the zones with decreasing velocity.

Functions of the type Nu = AReMare given for calculating the heat-transfer coefficients during eva-
poration and during "pure" heating for longitudinal and transverse blowing of air over the cords.

The time error in the calculation of the U(r) andf(r) curves is about 25%.

Dep. 2310~74, April 12, 1974,
Original article submitted April 27, 1973,

METHOD OF ENGINEERING CALCULATION OF
HEAT BALANCES FOR DRIERS AND OF FINDING
THE MOISTURE LOSS DURING THE DRYING PROCESS

V. A. Kurochkin UDC 66.047

Extensive use is made of Id diagrams in the practice of calculating drying processes. A new method
is proposed here for the engineering calculation of balances for drying installations which does not yield to
the Id diagram in the simplicity of the calculations but considerably increases their accuracy and speed.
The method was worked out on geometrical concepts concerning the drying process in the Id diagram.

The equation of the method based on Fig. 1 is the following:

AC AE+ EC MgAl ‘
g = — — = — ; )
89 =" BC Mgad TS (1)
We take
tg8=qu, —u)~ Mg=My=1; tga =0, 2)

where q = ¢y (&2 - ,91) + cmo(uzé‘2 - uﬁ&l) + G'AZQ are the components of the heat balance per kilogram
of absolutely dry material,

Simple equations for practical application are found with the use of the linear properties of the Id
diagram in a constant mass of dry material during the drying process. For example, the variation in
moisture saturation of the heat-transfer agent can be found from

Ad = 10000;7(1‘1 — ) R, @)
where Rg = r + cyaty +tanf; cg = cg + 0.00lcyad.
3 %
T\
s
o sz
" d)
\J ?o‘ o L7 ¢
> t
kS I3 7
9 \
.4 D
0 4q d, d
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From this the specific flow rate of the heat-transfer agent per kilogram of evaporated moisture is

1= 1000(Ad)~1 = Ry [eg (¢, — £,)] = (@)

The differential equation of the method is convenient for the analysis of the drying kinetics. In this

case the local tan 8 is found from
4 @ e, b
tge:ﬂz(“dr'{‘cmo“) du —Cihol a (5)

On the example of an analysis of the drying process in a tunnel drier it is shown that the intermediate
values of the parameters of the heat-transfer agent are represented in the diagram in the form of an S-
shaped curve. In an experimental plan the use of the method allows one to determine the moisture loss in
any zone of an industrial drier analytically using the differential equation of drying kinetics, which permits
the solution of problems of drying technology. In this case the accuracy of the calculations depends only
on the care in conducting the experiment and on the methods of solving the differential equation of drying
kinetics.

Thus, a method is proposed for the engineering calculation of the heat and material balances for
driers which permits the calculation of drying processes with acceptable accuracy and speed. The joint
use of the equation of drying kinetics and the proposed method allows one to calculate the course of the
drying process and to determine the moisture loss in any zone of the drier.

NOTATION
I, d are the heat content and moisture content of heat-transfer agent in J/kg and kg/kg, respec-
tively; ‘
G is the capacity of drier, kg/h;

1,5, & 1 192 are the initial and final temperatures of heat-transfer agent and material being dried, °C;
r is the specific heat of evaporation of moisture, J/kg;

Cgs Cva, ¢dr> Cmo
are the specific heat capacities of dry gases, moisture vapor, dry material, and moisture,

respectively, J/kg-deg;
uy, Uy are the initial and final moisture contents of material being dried, kg/kg.

Dep. 2276-74, February 11, 1974,
Original article submitted October 9, 1972,

EFFECT OF THE POROSITY OF A SOLID STREAM
OF GRANULAR CATALYZERS ON THE
FRICTIONAL RESISTANCE

Zh. F, Galimov UDC 547.315.2.07:66.094.185

The large pressure losses during the pneumatic transport of granular catalyzers in a solid stream
are caused by the friction of the granules against the surface of the tube. The dependence of the frictional
force on the porosity of the moving stream can be established if one considers a layer of the catalyzer in
a vertical tube as a particular case of the state of a granular soil in a closed contour.

According to the well-known Coulomb law in soil mechanics
F =PeFN.

The lateral pressure of the layer against the wall of the tube is proportional to the hydrostatic pres-
sure,
Fn = BopH.

With allowance for the elementary forces of lateral pressure along the height of the layer the total
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frictional force is

H
F o= S PefopHnaDdi,
1]

and in calculating the friction per unit surface it is

In the general case the force of friction is determined by the ratio of the forces of sliding and rolling
friction, the individual coefficients of which differ considerably. The angle of internal friction, which
characterizes the mobility of the layer, also has a power-law dependence on the porosity of the layer.

The value of the effective coefficient of friction and the hydraulic equivalent can therefore be represented
in the form of the equations

e \7 ;g \A"
e [an =[]
Keeping in mind that op = cq (i — ¢) and taking into account the relationship of the coefficients ¢, and
B, one can write

F = pHoa(l—e) (—e—)n.
£g /
A special method was worked out for the experimental determination of the coefficient y and the ex~
ponent n. The studies showed that the force of friction has an important dependence on the porosity only '
in the range of from 1 to 1.20 of the relative looseness /¢, of the layer. The exponent n » 3 and depends
on the height of the layer of granules.

NOTATION
3 is the hydraulic equivalent of lateral pressure of layer;
ob and g are the bulk and apparent densities of the catalyzer material;
H is the height of catalyzer layer in tube;
Pe is the effective coefficient of friction;
D is the diameter of tube;
ggand € are the porosities of layer in the states of rest and motion;
U is the modified coefficient of friction,

Dep. 2309-74, April 19, 1974,
Original article submitted May 31, 1973,

COEFFICIENT OF RESISTANCE OF THE CHARGE
IN A HOPPER

V. E. Davidson, V. I. Eliseev, UDC 541,182
and A, P. Tolstopyat

In the first part of the work the coefficient of resistance of the charge in a hopper is studied experi-
mentally. The experimental points are analyzed in accordance with the equation [1]
Ap dC

. vV _ Ap dc _ . 1
g_r/ 2g,wherer—- 7 4 )

Here Ap includes, first, the resistance of the layer of charge, and, second, the resistance caused
by the fact that the area of the opening through which the gas escapes from the hopper is less than the
cross—sectional area of the hopper.

The experiments were conducted on a flat hopper [2] with a slot opening crossing the entire bottom.
Polystyrene in ball form, scattered in narrow fractions [3], was used as the material of the charge. An
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Fig. 1, Pressure curves for the filtering gas ina
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analysis of the exp'erimental data for a charge with a height of Hx = 0.4 m led to the dependence
§=50/Re+0.3+7(~é—~%—)+0.1467. @)
f

It was established by the experiments (Fig. 1) that the entire region of variation in the pressure of
the gas filtering in the layer of the charge can be divided into two sections, a linear section Apl and a non-
linear section Apy, and that the height h of the nonlinear section does not depend on f. It was also noted
that Apy does not depend on the height of the charge when V = const and H > h.

On the basis of these experimental data and Eq. (2) the function £ = {{Re, T, 6) was established for a
layer of free-flowing material of arbitrary height,

— h
E=tr[1+ 70—
T = 1+ 48[85; £ = 50/Re + 0.446; b = h /g b, = 0.0584m, 3)

When =1 Eq. (3) is rewritten in the form £ = &g, which corresponds to well-known equations for the co-
efficient of hydraulic resistance in a layer of free-flowing material. The coefficients entering into the
expression for & lie within the field of scatter indicated for them in [4].

The problem of the mechanism of the resistance of a charge consisting of particles of spherical
shape is examined in the second part of the work. A model of the flow over a spherical particle which is
in a layer of the charge is proposed, making use of the constancy of the average porosity ¢ of a free-
flowing material [5] and the linearity of the dependence of the gas pressure on the height of the layer
through which it filters, On the basis of this model equations are written for the determination of the
forces of pressure and friction with allowance for the possible separation of the flow from the surface
of a particle.

The force of the total resistance acting on a particle in the charge was determined experimentally
by the weight method. The experiment was performed on a charge consisting of particles of spherical
shape whose number was determined from the volume of the charge, and equivalent diameter d of the balls,
and the porosity €, The result obtained makes it possible to confirm that in the range 10 < Re < 4000 of
Reynolds numbers studied the flow over spherical particles in a charge occurs with almost no separation.
In this connection one can conclude that the prineipal element in the mechanism of resistance in layers of
ball charges is the resistance of friction. '
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NOTATION

3 is the coefficient of resistance of the charge —hopper system;
&g is the coefficient of resistance of a layer of free-flowing material;
is the porosity;
de is the diameter of an elementary channel in a layer of free-flowing material;
H is the height of layer of free-flowing material;
App is the excess pressure in the layer at the height H = h;
Api is the pressure increment on a linear section as a function of H — h;
Re is the Reynolds number determined from diameter of a spherical particle;
T is the ratio of cross-sectional area of hopper to area of discharge opening;
) is the reduced size of discharge opening.
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STATISTICAL METHOD OF DESCRIBING THE
PROCESS OF DUST COLLECTION IN A WET
DUST COLLECTOR WITH A DISK

LIQUID ATOMIZER

S. I. Priemov and A. Ya. Tkachuk UDC 532.529.5

It is known that the highest dust-collection efficiency is achieved in those devices in which the pro-
cess of interaction of the drops with the dust is successfully accomplished under conditions where they are
comparable in size and the relative velocity of their motion is high [1].

The results of a study of an improved construction for a wet dust collector proposed earlier [21,
which has a crossed system of motion of the drops and dust, and a probability model of the process are
presented in the present report. The apparatus was tested in the following range of variation of the factors:
number of disks of dust collector 1-3; linear velocity of separation of drops from disk 30-60 m/sec; de-
gree of dispersion of dust (median diameter) 10, 13, 18 u (quartz), 25 ¢ {dolomite); dust concentration
0.5-5 g/m? specific flow rate of water 0.01-0.1 liter/m3; air temperature 20°C; flow rate of air 1000~
4000 m3/h,

In the study we used the method of statistical modeling [3], in accordance with which the experiment
was planned and the mathematical dependence of the dust collection efficiency on the basic factors was
found. The data were analyzed on a Mir-1 electronic computer and it was possible to establish that the
cleaning efficiency of a wet dust collector with a disk atomizer can be determined from the equation

0.062 [21.21 + (x, — 0.824)?] [0.56 +- (x5 — 0.874)%:054] 1J.087
x10.46 :

n:l—exp{—

It was established by a correlation analysis that the factors are arranged in the following order with
respect to the degree of influence on the cleaning efficiency at the optimum water flow rate: height of the
spray jet, degree of dispersion of the drops, degree of dispersion of the dust. The cleaning efficiéncy in
an apparatus with three disks 0.4 m in diameter for quartz dust with a median diameter of 10 and 18 U was
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93.8 and 94.5%, respectively, with a hydraulic resistance not exceeding 450 N/ m?, which enables one to
recommend this apparatus for the cleaning of ventilation exhausts.

NOTATION
7 is the degree of cleaning;
Xy is the relative weight content of fractions of =10 u in the dust studied;
Xy is the number of disks of atomizer;
Xg is the relative calculating content of drops with a diameter of =35 y;
Xy is the initial dust concentration.
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AXIALLY SYMMETRICAL TEMPERATURE FIELDS
IN LUNAR SOIL

V. V. Frolov UDC 536.24.02

The axially symmetrical problem of the thermal conductivity in a semi-infinite medium under condi-
tions imitating the heat exchange on the moon's surface is solved numerically. Zones of non-one-dimen-
sionality of the temperature field as a consequence of thermal insulation of part of the surface are studied.
The size of the thermally insulated region and the coefficient of thermal conductivity are varied.

The axially symmetrical problem of the thermal conductivity in a semi-infinite medium being ana-
lyzed is described by the equation

—_— — -
922 TR R T R

) velt, =) Zel, =), Re (0, =)

p—— =

aT ( T 1 oT7 9T
ot

and the boundary conditions

0, 0LR<L,

o 02 2L, R 0)—{
az &R 0= g0T4 — Aggs (v), R> L.

oR ‘R=o+: ’
The initial distribution T (ry, R, Z), assumed to be one-dimensional (0T/0R = 0), is obtained by solving
the problem of the establishment of a temperature field which is periodic in time under the effect of the
solar radiation qg(r) and the self-radiation of the surface. The solar radiation qg(r) is given by the equa-
tion

gs (1) = ¢ sin (2n7/t,).

The main purpose of solving the problem is to clarify the pattern of spread of the heat flux under the
insulated part of the surface (0 = R = L) and to determine the zones in which the solution of the problem
can be considered as one-dimensional with the assigned accuracy. The problem was solved numerically
by the method of elementary balances (explicit scheme) [L]. In the basic calculating version the thermo-
physical properties of the lunar soil are taken in accordance with the results of [2]:

¢ = 840 J/kg-deg, p = 1500 kg/m®, A = 4-107° kW/ m-deg.

Values of & equal to 4- 1075 and 4 -10™* were also examined. The parameter L was varied in the range of
1-10 m. The results of the calculations are presented in the form of graphs determining the zone of non-
one-dimensionality of the temperature field as a function of the parameters As L, and the allowable error.
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MOTION OF A ROTATING SPHERICAL PARTICLE
IN AN OFF-SETTING FLOW

B. M. Khusid  UDC 532,582,7:532.135

Motion of a rotating spherical particle through anoff-setting flow is considered. The fluid velocity
far away from the particle can be represented as follows:

Voo = ey -+ Vey, V> ¥R, oR.

In a number of articles the solution of this problem has been found in the Stokes approximation, that is, if
the interaction between uniform and gradient flows is ignored. In this paper an attempt is made to take
into account this interaction in the first approximation with respect to the number Re = VR/v starting with
the equations of the Oseen type:

dv
24

7

pV

= —yp+pAv, y.v=0,
V1r=R =0 (xe!l - yex)’ v‘r-»ao - Voo' ' (1)

The solution of the problem (1) is obtained by expanding in powers of the Reynolds number with the terms
of the order O(Re% ignored. Using this solution one can compute the force as well as the torque acting on
the particle:

F=F +F, M=_8uu(y/2— )R,

3 . 1
F, = 6auRV (1 -+ ry Re) e;, Fy==2apRe (y— Y m) Rey.

Thus, interaction between uniform and gradient flows results in adding a lateral force F, to the resistance
force F, (in the Oseen approximation) and the torque M. One should mention here that the torque M con-
tains no correction O(Re). This also follows from M being an axial vector and V a polar one.

NOTATION

is the velocity;

is the pressure;

is the density;

is the dynamic-viscosity coefficient;

is the particle radius;

is the angular velocity of rotating particle;
is the off-setting velocity.

EC R oW o<

-~
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TRANSFORMATION OF SERIES AND SEQUENCES
IN THE THEORY OF HEAT CONDUCTION

M. G. Kogan UDC 536.2.01.517.5.22

1. Finite and infinite series constitute the most widely used form of solutions of the equations of
mathematical physics. In many cases, however, the convergence of the series is slow; the problem which
then arises is how to speed up the process of the numerical calculation of solutions.

2. The first approach to this problem consists in transforming the series themselves in order to
improve their convergence in some continuous space — time region. In the theory of heat and mass trans-
fer successful use has been made, in particular, of an imaginary transformation of the Jacobi theta func-
tion. Using this, it is possible to represent the solutions of some problems in two forms, one of which
converges rapidly for small values of the Fourier criterion Fo, and the other converges rapidly for large
values of Fo. An effective transformation of the series can be carried out, however, only in individual
quasi-one-dimensional problems. Even in the simplest case of a plate with boundary conditions of the
third kind, the Jacobi transformation leads to cumbersome formulas,

3. Since the procedures for the transformation of series are not standardized, so that it is impos-
sible to use electronic computers for the purpose, it becomes desirable to improve the convergence by
another approach which is not sensitive to the individual properties of the functions and reduces to a limi-
ted number of stereotyped operations. This approach is based on the fact that in the numerical realization
of the solutions of physical problems we usually consider not a space — time continuum but a multidimen-
sional vector of solutions, i.e., a discrete set of values of the function at the nodes of the coordinate net-
work.

The value of the function at a node is equal to the limit of a sequence of partial sums S,. Making use
of additional information on the manner in which they approach the limit, we can make the convergence
considerably stronger. Since the operations are performed on sequences of numbers, not of functions, the
form of the general term of the series has no effect at all on the formulation of the computational procedure.
It canin fact be standardized and is suitable for both manual and machine calculations.

A powerful and general method for producing such information and accelerating the convergence of
numerical sequences is found in Shanks's nonlinear transformations. First-order transformations convert
the sequence Sp into Ty according to the formula

SnSppe— 554-1

Tn=en(Sn) = Sn ’_‘2Sn+l - Sn—-}—? )

To the sequence Ty, in turn, we can apply the Shanks transformation py = e(Tp) = e?(Sp), making the
convergence even stronger, and so on,

4. As an example, we calculate to five significant figures the temperature on the surface r = R and
along the axis r = 0 of a cylinder subjected to inductive heating, with a boundary condition of the second
kind, where the specific power is

£ (IR, Fo)—— — 2Fo +~L(r/R)’—f——('—l——7)—l—u(~r—— Fo),
' R = 9 1 i \R’ '

where f is a given function of the coordinate and the electromagnetic parameter; T is the mean value

TABLE 1

n u(1; 0,01)A/pR u (0; 0,01) A/pR

—S —e(Sp) —e2(Sp) S e (Sn) e%(Sn)
1 0,0654659 (Sn "l 0,162526 " "
2 0.0699156 | 0,0709195 0147698 | 0,14977
3 0,0705167 | 0,0706377 | 0,0706376 | 0,150106 | 0,14972 0,14972
1 00706174 | 00706316 | 0,0706377 | 0,149645 | 0,14972 0,14972
5 0,07063421 | 0.,0706374 . 0149730 | 0,14972
6 0,0706369 0.149715
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obtained by averaging over a cross section; A is the thermal conductivity; u; are e1genva1ues,

L3

Z i (w ——) exp (uiFo).

==]

For Fo = 0,01 and r = 0, obtaining a solution with five accurate figures would require the calculation
of 10 partial sums, i.e., the solution of 10 transcendental characteristic equations, followed by the calcu-
lation of the values of the eigenfunctions, exponential factors, and coefficients A;. The use of Shanks
transformations, each of which requires only eight arithmetic operations, made it possible to obtain the
answers by calculating only five or six partial sums. A very significant reduction in the amount of calcu-
lation work is achieved by the transformation of numerical sequences in the solution of problems with in-
homogeneous media in two or three dimensions,
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CALCULATION OF TEMPERATURE DISTRIBUTIONS
IN THIN-WALLED CYLINDRICAL STRUCTURES

S. N. Ivanov - UDC 536._2

Unconditionally stable difference methods for solving one- and two-dimensional heat-conduction
problems require the solution of large numbers of linear algebraic equations. In the one-dimensional
case when the systems have a diagonal form the most satisfactory method of solving them is the pivotal
method. In determining two-dimensional temperature distributions in the cross sections of thin-walled
cylindrical structures we obtain a set of one-dimensional problems connected with one another at isolated
points [1,2]. We solve the system of algebraic equations obtained by a modified pivotal method, taking
account of the special form of the matrices,

We introduce two types of rod systems: systems which do not contain closed contours, and systems
which do. We solve problems of the first type by an algorithm which reduces to a counter pivot method
[3] for two-rod systems. A problem of the second kind is solved by the method of sections, introducing
unknown temperatures or heat fluxes into the sections. Their values are chosen so as to satisfy the con-
tinuity of temperature and heat flux across a section. An algorithm is proposed which takes account of
contact resistances at rod junctions.

As an example we determine the temperature distribution in the reinforced cladding of an aireraft,
taking account of external radiation and contact resistance.
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TEMPERATURE DISTRIBUTION ALONG A
FINITE RADIATING ROD

V. V. Morozov UDC 536.2.023

\

An approximate analytic expression is obtained for calculating the steady-state temperature distri-
bution along a finite thin rod radiating into a medium with a temperature of absolute zero in the absence of
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internal heat sources and incident radiation for a specified temperature T, at one end of the rod and no
heat transfer at the other.

The steady-state heat-conduction equation in dimensionless parameters for a finite rod has the form -

dze
The temperature distribution along the rod can be obtained by numerical integration [1, 2], and for
values from 0 to 10 can be calculated by an approximate formula recommended in [3].

Equation (1) can be used to find the temperature distribution along a semibounded rod by expressing
the running coordinate x in terms of the length of the finite rod (X = x/I). An analytic solution of this
problem was derived in [2], and in the standard notation the temperature of a semibounded rod at the cross

section x =1 is '
;5 = 4 -‘—\2/3 - (2)
Vs

A comparison of the temperature at the end of a finite rod 6] obtained by nmumerical integration with the
temperature of a semibounded rod at the section x = I for the same values of N shows that for N = 20 the
ratio 67/0;75 can be considered constant and equal to 1.231 to four significant figures, and for the whole
range considered N = 0-10* the temperature at the end of a finite rod is given by the relation

- 1.231

(l—,—]/_N—}-OBSBJ ' ®

For any cross section x along the rod the thermal-conductivity parameter of the part of the rod in
the segment I — x'is given by N1 — x)263, and by analogy with (3) can be written as
53 1.231

6 (x+ _%N(I—X)’93+0.1338\)2/3- (4)

Hence, by taking account of (3) we obtain an equation for the temperature distribution along a finite rod
for practically all values of the parameter N encountered in engineering practice:

9 —
14 VWN+O.1338+0.3658 I/(H- V__N—«—O 1338 +5 826N(1—X)z2

9 9
—_ . ——— N (I —X)2
(H— o N+0 1338) m { )}

2/3

6= (5)

The difference between the analytic relations (3) and (5) and the results of the numerical integration
presented in the paper is no more than 2%.

NOTATION

is the temperature;

is the Stefan— Boltzmann constant;

is the emissivity;

is the thermal conductivity;

is the perimeter of the rod;

is the cross section of the rod;

is the coordinate along the rod;

is the length of the rod;
=T/T, is the dimensionless temperature;
X=x/1 is the dimensionless length.

@ ~MHE >0 Qg
I

Subscripts:

0 in reference to parameters at the beginning of the rod;
l in reference to parameters at the end of the rod;

s in reference to parameters of a semibounded rod;

N= csuT%l LYIN is a dimensionless thermal-conductivity parameter.
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APPROXIMATE SOLUTION OF THE ONE-DIMENSIONAL
NONLINEAR HEAT-CONDUCTION EQUATION

M. A, Gusein-Zade and N, A. Parfent'eva UDC 536.2,023

An approximate solution of the heat-conduction equation which takes account of the temperature de~-
pendence of the diffusivity is presented. Certain of the solutions obtained are compared with exact solu-
tions of nonlinear equations given in {1]. The problem is solved by applying the comparison theorem [2]
in the following way. The constant minimum and maximum temperatures, for example,fora semibounded
region the initial and then the limiting value, are substituted in succession into the equation. In each case
this yields an equation with constant coefficients which is readily solved, On the basis of the comparison
theorem and from physical considerations it can be expected that the curve sought for the temperature dis-
tribution along x described by the initial nonlinear equation will lie between the curves for the temperature
distributions found for the two extreme values of the diffusivity. Calculations show that if the approximate
value of the temperature is taken as the geometric (and sometimes the arithmetic) mean of the two temper~
atures found, the values obtained are in good agreement with the exact values except for very small t or
very large x. Problems involving various forms of the temperature dependence of the diffusivity can be
solved in this way. In addition, the method can be used to solve the nonlinear heat-conduction equation
taking account of convective heat transfer. ‘

The solutions of the problems indicated are obtained for both semiinfinite and finite regions. It is
shown that in many cases the Galerkin method also gives good results.
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